The second-order system defined by \(\frac{{25}}{{{s^2} + 5s + 25

The second-order system defined by \(\frac{{25}}{{{s^2} + 5s + 25
| The second-order system defined by \(\frac{{25}}{{{s^2} + 5s + 25}}\) is given a step input. The time taken for the output to settle within ± 2% is

A. 1.2 s

B. 2 s

C. 1.6 s 

D. 0.4 s

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Concept:

The transfer function of the standard second-order system is:

\(TF = \frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{{ω _n^2}}{{{s^2} + 2\zeta {ω _n}s + ω _n^2}}\)

ζ is the damping ratio

ωn is the natural frequency

Characteristic equation:

\({s^2} + 2\zeta {ω _n} + ω _n^2 = 0\)

Settling time (Ts)It is the time taken by the response to reach ± 2% tolerance band as shown in the fig above.

\({e^{ - \xi {ω _n}{t_s}}} = \pm 5\% \;\left( {or} \right) \pm 2\% \)

 \({t_s} \simeq \frac{3}{{\xi {ω _n}}}\) for a 5% tolerance band.

\({t_s} \simeq \frac{4}{{\xi {ω _n}}}\) for 2% tolerance band

Calculation:

\(G\left( s \right) = \frac{{25}}{{{s^2} + 5s + 25}}.\)

By comparing the above transfer function with the standard second-order system,

ωn2 = 25 ⇒ ωn = 5

2ζωn = 5 ⇒ ζ = 0.5

As the damping ratio is less than unity, the system is underdamped.

Settling time, 

\({t_s} = \frac{4}{{\zeta {ω _n}}} = \frac{4}{{0.5 \times 5}} = 1.6\;sec\)

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGubGaamiAaiaadwgacaGGGcGaamizaiaadwgacaWGUbGaam4B % aiaad2gacaWGPbGaamOBaiaadggacaWG0bGaam4BaiaadkhacaGGGc % Gaam4BaiaadAgacaGGGcGaamyyaiaad6gacaWG5bGaaiiOaiaadoga % caWGSbGaam4BaiaadohacaWGLbGaamizaiaacckacaWGSbGaam4Bai % aad+gacaWGWbGaaiiOaiaadshacaWGYbGaamyyaiaad6gacaWGZbGa % amOzaiaadwgacaWGYbGaaiiOaiaadAgapaWaaWbaaSqabeaapeGaam % OBaaaakiaacckacaWGPbGaam4CaiaacckacaaIXaGaey4kaSIaam4r % amaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaamisamaabmaapa % qaa8qacaWGZbaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa!715B! The\;denominator\;of\;any\;closed\;loop\;transfer\;{f^n}\;is\;1 + G\left( s \right)H\left( s \right) = 0\)The denominator of any closed loop transfer function is ;

1 + G(s)H(s) = 0.

For a second order system;

\(1 + G\left( s \right)H\left( s \right) = {s^2} + \;2ζ {ω _n}s\; + {ω ^2}_n = 0\; \ldots \ldots \;\;\left( 1 \right)\)

where ζ is damping factor and ωn is natural frequency of oscillations.

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGpbGaamOBaiaacckacaWGJbGaam4Baiaad2gacaWGWbGaamyy % aiaadkhacaWGPbGaamOBaiaadEgacaGGGcGaamizaiaadwgacaWGUb % Gaam4Baiaad2gacaWGPbGaamOBaiaadggacaWG0bGaam4Baiaadkha % caGGGcGaam4BaiaadAgacaGGGcGaamyzaiaadghacaWGUbWaaeWaa8 % aabaWdbiaaikdaaiaawIcacaGLPaaacaGGGcGaamyyaiaad6gacaWG % KbGaaiiOaiaadwgacaWGXbGaamOBamaabmaapaqaa8qacaaIXaaaca % GLOaGaayzkaaGaaiilaiaacckacaWG3bGaamyzaiaacckacaWGNbGa % amyzaiaadshaaaa!6835! On\;comparing\;denominator\;of\;eqn\left( 2 \right)\;and\;eqn\left( 1 \right),\;we\;get\)Note:

For 2% tolerance band:

\(ts\; = \;\frac{4}{{\zeta {ω _n}}}\)

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqaHjpWDpaWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaOGa % eyypa0JaaGOmaiaaiwdacaGGGcGaaiiOaiaadggacaWGUbGaamizai % aacckacaGGGcGaaGOmaiabeA7a6jabeM8a39aadaWgaaWcbaWdbiaa % d6gaa8aabeaak8qacqGH9aqpcaaI1aaaaa!4B4D! ω _n^2 = 25\;\;and\;\;2ζ {ω _n} = 5\)For 5% tolerance band:

\(ts\; = \;\frac{3}{{\zeta {ω _n}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\)